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1 Introduction 

Either being short on statisticians or employing a clever marketing scheme, 
Nabisco has recently issued the "Chips Ahoy! 1000 Chips Challenge" [1]. The 
cookie company is asking for the most "creative" way to confirm that there are 
1000 chips in every 18 ounce bag of their chocolate chip cookies. This sounds 
like a simple enough challenge but several questions come to mind: 

1. Where do we get the bags of cookies? 

2. How many bags do we need? 

3. How do we count the chips in a cookie? 

4. What method of data analysis is most appropriate? 

5. Who possibly has enough free time to partake in such a trivial pursuit? 

Faculty members at the United States Air Force Academy are encouraged to 
involve cadets in interesting and sometimes relevant projects. Likewise, cadets 
are always eager to accept a challenge, especially if chocolate chip cookies are 
involved. Thus, we have the perfect mix for tackling the Chips Ahoy! challenge. 

This paper will discuss how our Introductory Probability and Statistics 
course addressed the above questions in meeting the challenge. However, most 
of the attention will focus on the fourth question, the analysis, since as statis- 
ticians, this is our bread and butter, or milk and cookies. The first attempt 
to analyze the data involved a confidence interval for the mean. We quickly 
realized that this standard method presented in most introductory courses was 
inappropriate. We began to investigate other intervals which are appropriate 
for the problem but are not typically covered in an introductory course. We 
will share some insights on confidence, prediction, and tolerance intervals and 
use the Chips Ahoy! challenge to tie these concepts together. 

2 Methods 

An 18 ounce bag of Chips Ahoy! cookies contains approximately 16 servings at 3 
cookies per serving. Nabisco claims that each bag of cookies contains over 1000 
chips. A chip is defined as, "any distinct piece of chocolate that is baked into 
or on top of the cookie dough regardless of whether or not it is 100% whole." [1] 

In order to obtain a representative sample of cookies, cadets had friends and 
relatives from across the country mail in bags of cookies to the Academy. In 
all, 275 bags were received from 46 different states. Once all the cookies were 

received from across the United States, it was time to count the chips. Chips 
were separated from the cookie by dissolving the cookie in water. Although the 
preferred method of cookie extraction is to dissolve the cookie in milk, water 
was used to minimize costs. 



From the 275 bags of cookies a random sample of 42 bags was selected for 
counting. The remaining 233 bags were used to maintain the energy level of the 
cadets doing the counting. Data for the number of chips found in 42 bags of 
cookies can be found in Table 1. 

Table 1: Raw Data for Number of Chips per Bag 
1363 1269 1293 1356 1137 1228 1087 
1307 1325 1214 1294 1213 1154 1514 
1279 1239 1219 1545 1135 1121 1185 
1258 1098 1377 1440 1219 1546 1270 
1215 1402 1191 1132 1295 1419 1247 
1166 1345 1200 1143 1199 1103 1244 

x = 1261.57 and s = 117.58 

3    Results 

Now that the "cookie is crumbled", what do we do? In this section we will 
discuss 6 different approaches to answering this question. In general the ap- 
proaches involve either a confidence interval, prediction interval, or tolerance 
interval. 

3.1    Confidence interval for the mean approach 

Being in an introductory statistics course, the cadets immediately felt that a 
confidence interval would be the most appropriate analysis. A lower confidence 
bound for the average number of chips in a bag can be found by 

—     4 ^y V — H-a,n-\—7=. 
y/n 

where ti-a>n^iis the 100(1—a)th percentile of a t distribution with n — 1 degrees 
of freedom, y is the sample mean, sy is the sample standard deviation, and n 
is the sample size. For our data set the 95% lower confidence bound is 1231 
chips. Therefore, we are 95% confident that the average number of chips per 
bag is at least 1231. By confident we mean that 95% of similarly constructed 
intervals from many independent random samples would actually capture the 
true average number of chips. 

There are several draw backs with this method. First, it is an estimate 
of the average number of chips per bag. Nabisco's claim centers around the 
number of chips in an individual bag not on the average number of chips. That 
is, Nabisco is interested in the entire distribution of chips not just where the 
distribution is centered. Second, the interval does not address the issue of 1000 
chips. Therefore, even though the confidence interval looks promising, it really 
does not meet the challenge. 



3.2 Confidence interval for the proportion conforming 

After scratching our heads and eating a few cookies, we decided to look at a 
confidence interval for the proportion of bags with more than 1000 chips. From 
the data in Table 1 we can see that 100% of the bags have over 1000 chips. If 
we define the random variable P as the proportion of bags with more than 1000 
chips, we can find a lower confidence bound for 7r, the true population propor- 
tion. Most introductory statistics courses develop the confidence bound for the 
proportion based on the normal approximation. However, this approximation 
is poor for small or large values of it. An exact lower confidence bound can be 
found using 

1 - ß(l —a,n — x + l,x) 

where ß(l - a, a, b) is the 100(1 - a)th percentile of a Beta distribution with 
parameters a and b [2]. Most popular spread sheets such as Microsoft Excel 
have this function built in. For the our data n - 42 and x = 42, yielding 
a 95% lower confidence bound of 0.93. Thus we are 95% confident that the 
true proportion of bags with more than 1000 chips is at least 93%. Again, by 
confident we mean that 95% of similarly constructed intervals will capture the 
true population proportion of bags with more than 1000 chips. 

Their are two potential problems with this approach. First, the lower bound 
of 93% seems to be very conservative. Perhaps by making some distributional 
assumptions a tighter bound can be obtained. Second, the defined limit (1000 
chips) is less than our smallest observed value, thus the lower confidence bound 
is not sensitive to this limit. In other words, suppose that the Nabisco challenge 
had been for more than 500 chips per bag. The analysis on our data set would 
allow us to conclude that we are 95% confident that the proportion of bags with 
more than 500 chips is at least 93%. Intuitively one would think that we should 
have a larger proportion conforming as the limit is reduced. 

3.3 Prediction interval 

Although we are not dealing with fortune cookies, another approach to this 
problem is to try and predict the number of chips in future purchases of bags of 
cookies. One way to do this is with a prediction interval. The prediction interval 
is based on the difference between the next observation and the mean. Since 
these variables are independent, the variance of this difference is a2Jl + ±. 
Thus the appropriate lower prediction bound is 

y-ti-a,n-iSydl + -. (1) 

This interval is based on the assumption that individual observations are nor- 
mally distributed [3]. Figure 1 is normal Q-Q plot of the number of chips per 
bag. This figure along with a Kolmogorov-Smirnov goodness of fit test [4], 
reveals there is no reason to reject the claim that the data are normally dis- 
tributed.   Therefore, we are 95% confident that the next bag of Chips Ahoy! 
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Figure 1: Normal Q-Q Plot of the Number of Chips in a Bag of Cookies. 

cookies will contain more than 1061 chips. In this case confident means 95% of 
similarly constructed prediction intervals from independent samples will contain 
the future value from another independent sample. 

A problem with this method is that it is based on the next bag of cookies 
and does not account for the population of bags of cookies. This method can 
be extended to the next m bags of cookies using a Bonferonni approach where 
Equation 1 becomes [5] 

y-h-a/m,n-lSy\   I 
n 

Notice that the width of the interval increases with the number of predicted 
bags m. Another problem is that, again, this approach doesn't focus on 1000 
chips. 

3.4    Parametric tolerance interval 

After consuming several bags of cookies, our tolerance for chocolate chip cookies 
was gone. But, it occurred to us that a tolerance interval may be appropriate 
for this analysis. A tolerance interval establishes bounds between which a fixed 
proportion of individual observations will occur. If we knew that the total 
number of chips per bag was normally distributed with mean, fi, and variance, 
er2, then 95% of the bags of cookies will contain more than /J, - 1.645cr chips. 
Since we do not know (i and a2, we must estimate them with sample statistics. 
The use of the sample statistics in place of the population parameters adds 



uncertainty in the proportion of the population covered by the estimate y - 
Z(i-a)Sy. The tolerance interval accounts for this uncertainty by assigning a 
level of confidence to the proportion of the population falling in the interval. 
If the parent population is normally distributed, the tolerance interval has the 
form 

V ~ ksy (2) 

where k adjusts for the use of sample statistics in place of population parameters. 
As the sample size (n) increases, k approaches the standard normal percentile 
(for a 5% level of significance, as n approaches oo, k decreases to 1.645). Tables 
for k can be found in Eisenhart [6]. For our data, we can be 95% confident that 
at least 95% of the bags of Nabisco Chips Ahoy! cookies contain more than 
1012 chips. It is important to note that the claim is at most 5% of all bags 
of cookies will contain less than 1012 chips. By confident we mean that 95% of 
similarly constructed intervals from independent random samples would cover 
at least 95% of the total number of chips per bag. 

Notice that the tolerance statement centers on 1012 chips and not 1000. 
This method also assumes normality for the distribution of the number of chips 
in a bag of cookies. While this assumption is plausible for this data set (see 
figure 1), one may not always be willing to assume normality. In which case a 
distribution-free method may be preferable. 

3.5    Distribution-free tolerance interval 

To avoid the assumption of normality in the parent population, a distribution- 
free tolerance interval based on order statistics can be formulated. Based on the 
first order statistic, the smallest value in our data set, the lower tolerance interval 
has the following surprisingly simple relationship (see appendix for details): 

Pn = oc. (3) 

Here p is the proportion of the population greater than the smallest data point 
(first order statistic), a is the level of significance, and n is the sample size. 
The distribution-free method will be demonstrated on our data even though 
the normality assumption is plausible. This is done for demonstration purposes 
only. For our data the first order statistic is 1087 chips; using a .05 level of 
significance in Equation 3 yields a value of .93 for p. Thus we are 95% confident 
that at least 93% of all bags of Chips Ahoy! cookies contain more than 1087 
chips. This interval is exactly the same as we would have obtained by the 
method in Section 3.2 if we had defined the limit as 1087 chips instead of 1000. 

Equation 3 also provides a simple formula to calculate sample size. Solving 
for n, the sample size, the result is: 

n = IOSTT (oQ .. 
logT(p)' { ' 
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Figure 2: Bootstrap Distribution of the Proportion with More than 1000 Chips. 

3.6    Bootstrap based on the naive approach 

A relatively simple approach that first semester statistics students want to take 
is to calculate P(Y > 1000) where Y is the number of chips per bag of cookies. 
This probability can be interpreted as the proportion of all bags of cookies with 
more than 1000 chips. The probability calculation is based on the assumption 
that Y is normally distributed and that we know /z and er2. If we naively use 
the sample statistics as estimates of the parameters, this probability calculation 
is only a point estimate of the true probability. To account for the uncertainty 
associated with replacing the parameters with sample statistics, a bootstrap 
method [7] was used. In this method, we sample with replacement from our 
original data. Based on this sample, we calculate the sample mean and sample 
variance and use them as parameter estimates to calculate P(Y > 1000) where 
we assume Y ~ N(y,sl). This process is repeated to obtain the distribution 
of the proportion of bags of cookies with more than 1000 chips. A bootstrap 
lower confidence bound for this proportion was then calculated. Based on our 
data, Figure 2 is the bootstrap distribution of the proportion of bags with more 
than 1000 chips. The 5th percentile for this distribution is 97%. In other words, 
we are 95% confident that at least 97% of all bags of Chips Ahoy! cookies 
will contain more than 1000 chips. Notice that the interpretation is similar to 
Section 3.2; however, because of the normality assumption the confidence of this 
section is less conservative; it is narrower. 



4    Discussion 

One of the fascinating and fun aspects of statistics is the many approaches that 
can be used to solve the same problem. These varied approaches often have 
very subtle differences. In this paper, we were interested in finding out if all 
18 ounce bags of Chips Ahoy! cookies contain more than 1000 chips. We first 
collected bags of cookies from across the United States and then extracted the 
chips in 42 randomly selected bags. For the analysis, we looked at confidence 
intervals, prediction intervals for a single bag, tolerance intervals (parametric 
and distribution-free), and a bootstrap confidence bound for the proportion 
of bags exceeding the specified 1000 chips (for an excellent discussion of the 
different types of intervals see Hahn and Meeker [5]). To reiterate, the results 
are as follows: 

1. Using confidence intervals for the mean, we can be 95% confident that the 
average number of chips per bag is more than 1231 chips. 

2. Using confidence intervals for the proportion exceeding a limit, we can be 
95% confident that the proportion of bags with more than 1000 chips is 
at least 93%. 

3. Using a prediction interval, we can be 95% confident that the next single 
bag of Chips Ahoy! cookies will contain more than 1061 chips. 

4. The parametric tolerance interval suggests that we can be 95% confident 
that at least 95% of the bags contain more than 1012 chips. 

5. The nonparametric tolerance interval suggests that we can be 95% confi- 
dent that at least 93% of the bags contain more than 1087 chips. 

6. Using the bootstrap approach we can be 95% confident that at least 97% 
of the population of Chips Ahoy! cookie bags contain more than 1000 
chips. 

It is reassuring to see that all the methods yield consistent answers. However 
the question stiU remains, did we meet the Nabisco challenge? From a statistical 
point of view we need to acknowledge that we can never be 100% confident that 
all the bags contain more than 1000 chips. As an example, say Nabisco wants to 
be 99.99% confident that 99.9999% of the bags of Chips Ahoy! cookies exceed 
the smallest observed count. Using Equation 4, they would need to count the 
chips in 9,210,336 bags of cookies. If all of the 9.2 million bags had over 1000 
chips, they still would not be 100% confident that all bags have over 1000 chips. 
However, from a practical point of view, the bootstrap approach states that we 
are 95% confident that at least 97% of the population of Chips Ahoy! cookie 
bags contain more than 1000 chips. So, yes we did meet, beat, defeat, and eat 
the Nabisco Chips Ahoy! challenge! 
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Appendix 
The distribution of the rth order statistic [8] is: 

g(yr)=(r-l)!(n-r)! [J-J^l       f{x)[J     f{x)dx 
r-l 

(5) 

where n is the sample size and f(x) is the probability density function of the 
parent random variable X. Define a new random variable p as the proportion 
of the population that is greater than the rth order statistic, yr: 

-f f(x)dx. (6) 

Transforming Equation 5 using Equation 6, yields the probability density func- 
tion of p as 

*&"-(,-iw»-,)i'1-'^'w"- o 
Equation 7 is a Beta distribution with parameters n-r + 1 and r. Notice that 
Equation 7 does not depend on the distribution of XI For the case of the first 
order statistic (r = 1), Equation 7 becomes 

h(p) = up71-1  0 < p < 1. (8) 



To find the proportion p of the population that exceeds the rth order statistic 
with (1 - a)% confidence, use Equation 8 in 

which reduces to 

fP 
/   h(p)dp = a 

Jo 

p" = a. 


